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When we look a t  photographs of real transonic flows which are predicted to be shock- 
less, we find a very large number of weak shocks almost perpendicular to  the stream- 
lines. These are no more than almost-trapped upstream-propagating nonlinear waves. 
In this paper we try to obtain a simple approximate equation which gives their 
complete history and takes into account both their turning effect, owing to  a non-zero 
gradient of the fluid velocity in a direction normal to  the streamlines, and also the 
finite radius of curvature of the wave front. We first give a brief discussion of a few 
results which can be easily obtained from the solution of the approximate equation 
and then compute the history of two nonlinear pulses by numerically integrating the 
equation. 

1. Introduction 
Recently some interest has been revived in the propagation of weak pulses in a tran- 

sonic flow (Prasad 1973) in order to  resolve the famous transonic controversy. It was 
initially proposed that, owing to trapping of upstream-propagating waves a t  different 
points of a sonic surface, a continuous mixed supersonic and subsonic flow is unstable 
(Kuo 1951). Using methods of geometrical acoustics, Spee (1971) calculated the 
motion of the wave front and showed that, owing to  the variation of the flow variables 
in the directions normal to the streamlines, a wave front perpendicular to  the stream- 
Iines turns and thus escapes being trapped in the transonic region. Still, when we look 
at photographs of a transonic flow (Spee 1971) we observe the presence of a large 
number of weak shocks perpendicular to  the streamlines and moving slowly in the 
transonic region. 

The upstream-propagating waves perpendicular to the streamlines, for which each 
of the bicharacteristic velocity components vanishes a t  a sonic point, remain in the 
transonic region for a longer time compared with other waves and this explains the 
existence of almost-trapped waves with weak shocks in a transonic flow. Prasad 
(1973) discussed the propagation of these trapped waves by assuming the wave front 
to be plane and perpendicular to the streamlines. Owing to this assumption he could 
not take into account the important multi-dimensional turning effect. Under the 
assumption that a characteristic length in the steady state and the radius of curvature 
of the wave front are large compared with the extent of the wave in the direction 
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normal to the wave front, and that the angle between the normal to the wave front 
and the streamlines is small, we can easily discuss the turning effect of the waves by 
using a model equation which has been derived by Prasad (1975). This model equation, 
governing the motion of the perturbations to the steady flow, is a quasi-linear partial 
differential equation which completely takes into account the curvature of the wave 
front, the nonlinear steepening of the pulse and the two-dimensional turning effect 
and gives the complete history of the pulse as it moves in the transonic region. 

We present here a local analysis of the model equation in the neighbourhood of 
points on the sonic line, assuming the initial wave front to be plane. In  the neighbour- 
hood of sonic points we use the local analysis to discuss the motion of the pulse in 
two special cases: (i) when the initial value of the angle 0 between the normal to 
the wave front and the x1 direction is zero and (ii) when the initial value of 0 is 
non-zero. 

2. Derivation of the approximate equation using thin-aerofoil theory 
In order to avoid duplication and save space, we shall simply refer to the work of 

Prasad (1975) without defining the various symbols. In  Prasad’s paper there are two 
parameters: (i) E ,  which is a measure of the extent of the wave in the normal direction, 
and (ii) 6, which is of the same order as the amplitude of the perturbations. Here we 
take Sand E both to be small and of the same order in magnitude. 

From the unsteady equations of motion of an inviscid non-conducting polytropic 
gas, the approximate equation for the perturbations is (see 9 3 of Prasad 1975) 

where 

ao aw 
-+(q,-an,)- = (K-uoO)o ,  
at 8% 

and a = -  8 an,/ax;. (2.3) 

Here a/ax; is an interior derivative in the characteristic surface and is given by 

a a n a  

ax, ax, cL at’  
-=-+A- cL=a - nu q,. ( 2 . 3 ~ )  

If the wave is not headed by a shock, the flow variables are continuous across the 
wave front, which can be determined by solving the following equations along rays: 

dx,/dt = qlo - a, cos 0, (2.4) 

dx2/dt = qz0 - a, sin O 
and 

(2.6) 

where O is the angle which the unit normal to the wave front makes with the x1 axis. 
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Now we use the assumptions of thin-aerofoil theory and therefore introduce the 
following non-dimensional variables : 

q,, = a* + ra*q,,, q,, = rta*q,,, (2.71, (2.8) 

5, = xlp, x,  = r*x2/1, (2.9) 

where r is a small parameter, 1 the length of the aerofoil (Guderley 1962) and a star 
indicates the values of the quantity a t  a sonic point (x:, x i ) .  From Bernoulli's equa- 
tion, we get the following expression for the sound speed: 

a, = a*[ l -  * (y  - 1) rq1, - i ( y  - 1) (y  + 1)  T,i j&] + o(r3). (2.10) 

From (2.6) and (2.10) we get 

- _ -  1 d e  --T%--- aQ1o 7 - 1  7%- a!?,, -*(y-  1) ( y+  l ) r L -  a(qf0) 

a* dt ax, 2 ax, ax, 

+ o(73) + o(e3). (2.11) 

Case 1.  When 1 > 101 3 r*, the dominant terms give 

Case 2. When 101 < r*, 

Case 3. When 101 = O(r*) ,  

--=--%-- Y + l a P l o  + r - 0 - .  Y + l  a?,, 1 d e  
a* dt 2 ax, 2 axl 

(2.12) 

(2.13) 

(2.14) 

Equations (2.12) and (2.13) are contained in (2.14). Thus we may use (2.14). 
Similarly, on considering the expansions of the right-hand sides of (2.4) and (2.5), 

we find that the case 101 = O ( d )  contains the other two cases and the approximate 
equations are 

and 

a*-ldx,/dt = * (y  + 1) ijlo r + 
a*-ldx,/dt = - 0 + r8?jz0. 

(2.15) 

(2.16) 

However, in the case 101 = O ( r f ) ,  which we consider in what follows, the second 
term on the right-hand side of (2.16) can be neglected. Now we introduce the following 
non-dimensional variables : 

t = ta*r/z, e = el7*. (2.17) 
Thus (2.14)-(2.16) give us 

- 

(2.18) 

(2.19) 

(2.20) and 
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Noting that w = 0(6), we have the following approximations for the bicharacteristic 
velocity components in the unsteady flow: 

ql--n,a = ~ * [ ~ ( r + 1 ) ~ ? j ~ , + $ 3 ~ ] + ~ ( y + 1 ) ~ + 0 ( r e ) ,  (2.21) 

q2-n2a = -a*8+0(~*8) .  (2.22) 

For isentropic flow, if we retain the dominant terms in the expansion for K ,  we get 

Equation (2.1) now reduces to 

(2.23) 

(2.24) 

where we have retained only the dominant terms and used 8 = 6. We further assume 
e = 7 and define a non-dimensional quantity 

so that we get 

- 
w = w/ea* = w/ra*, 

Equation (2.24) finally reduces to 

ais -as -+ ; r ;1  - ( q l o + Z j ) + p  as, - -8-  az, = (E--H)G, 

(2.25) 

(2.26) 

(2.27) 

where (2.28) 

To study the complete history of a nonlinear pulse, we have to take the numerically 
computed flow field past a transonic aerofoil, solve the linear ray equations (2.18)- 
(2.20) to determine 7 and then solve (2.24) numerically and fit a shock wave into the 
solution wherever necessary. This will involve a lot of computational work. In  order 
to proceed further analytically we present a local analysis in the next section. 

3. Local analysis of (2.27) in the neighbourhood of points on the 
sonic line 

We discuss here a local analysis of (2.27) by which we can clearly show the interplay 
of the effects of nonlinear steepening, two-dimensional turning and wave-front 
curvature. Assuming that the short wave is already in a small neighbourhood of a 
point (ST, 2;) on the sonic line, we try to compute its motion before it moves away 
from this small neighbourhood. 

At the sonic point we have ?j?, = 0 to the first approximation and hence in the 
neighbourhood of this point we can write 

q,, = ( g j * ( z , - G ) +  (Z;)* - ( Z 2 - Z 3 +  .... (3.1) 
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Hence, from the dominant terms in (2.27), we get 

. .  
where CU = *(y+ 1 ) .  (3 .3)  

(3 .4)  
Using 6 = 2,-2;, 7 = z,-2:, i3 = w, - 

R* = k ,  +(y + I) ( @ l o / a X z ) *  = cm 1, = ”3 
the equation in the simplified notation reduces to 

If we assume the wave front to be plane and perpendicular to the streamlines, then 
8 = 0 and a = 0. Equation (3 .5 )  then reduces to 

which is the same as the approximate equation used by Prasad (1973).  

Example 1 

We first consider the case when initially the wave front is plane and perpendicular 
to the streamlines. We therefore assume the initial wave front to be 

- 
C = d ,  7 = ~ ,  8 = 0  a t  t = o ,  (3.7)  

where d is a constant giving the initial position of the wave front and s varies along 
the wave front. 

Now the solution of the equations 

d8/di  = - 1 - k8 ,  

dt/di? = - k6 + 1~ + 882 
(3.8) 

(3 .9)  

and dvldi? = - 8 
with (3 .7)  as initial data is 

- 1  - 8 =  - - ( I - e - k t ) ,  
k 

(3.10) 

(3.11) 

(3 .12)  

(3.13) 

To find the mean curvature of the wave front, we note that 

Ti = +$(8a8/a[’-a8/a7’). 
8, as given by (3 .11) ,  can be regarded as a function of (f, s). It can also be regarded as 
a function of (&’, 7‘) by first solving for f and s in terms of 6’ and 7’ from (3 .12)  and 
(3.13) with t and 7 replaced by 5‘ and 9‘. We can now easily show that 

8ai7lar - a8iaT’ = 0. 
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That is, the wave front, which was initially taken to be plane, remains plane for all 
time. This agrees with the assumption that the wave front is plane in Prasad’s paper. 
However, (3.11) shows that the wave front turns, as was shown numerically by Spee 
(1971). We find here that as f tends to infinity s tends to a limiting value - 1/k. There- 
fore, the unsealed angle 0 which the wave front makes is O ( d l / k ) ,  showing that in 
reality the wave front is almost normal to the streamlines. 

Thus when the initial value of 8 is zero, (3.5) now reduces to 

aw -aw c+ (C w -kt+Z7 + p) - - e- = kw. 
a i  a6 a7 

(3.14) 

A parametric representation of the solution of (3.14) is 

w = % ( t o ,  70) ekS 

1 - 1  - 1  7 = - t + - e e - k t - -  k k2 k2 + 70 

and 

6 = 

(3.15) 

(3.16) 

12 - 1 12 - i 12 - 
k2 2 k3 2 k3 

+-t+- - ( e - k t - 1 ) + - - ( e - k t - e - 2 k i ) ,  (3.17) 

where the initial distribution of W in the pulse is given by W = W,(E0,7,) for all 
points t; = t;,, 7 = 7,. 

(in the 
5 direction) and a W/ar (in the 7 direction), at  any point moving with the pulse change, 
and we can calculate them at any time in terms of the initial slopes aW,/a(, and 

Now, as the pulse propagates, the components of the slope, namely 

aw,/a70 : 

(3.18) 

(3.19) 

Thus the components of the slope at  a point moving with the pulse become infinite 
a t  some time if the initial component of the slope in the 5 direction is negative. Thus 
a shock wave first appears in the continuous pulse a t  a time given by 

(3.20) 

which is the same as the value of T obtained by Prasad (1  973). 
The shock motion. This may be found easily by using the result that for a weak 

shock the components of its velocity are the arithmetic means of the corresponding 
components of the bicharacteristic velocity just ahead of and just behind the shock. 
This can be easily deduced from the characteristic equations of the jump condition 
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of (3.14) across the shock front +(x,,t) = 0 (see Courant & Hilbert 1962, p. 489). 
Thus the shock position (&, r ] J  can be obtained from 

dtsIdf = *C{W,(t*, Ts,  f) + & ( t s ,  r]s , f ,> - kts + 1% + p2, (3.21) 

dv,/df = - -8, (3.22) 

where the suffixes a and b refer to the values of W just ahead of and just behind the 
shock. 

Example 2 

Here we consider the case in which the initial value of 8 is non-zero, say 8 = 8, a t  
f = 0. Therefore we assume the initial wave front to be 

t = Q o ( 4 ,  T = 7fO(S) at f = 0, (3.23) 

where tfo and qf0 are given by 

gfo = d cos e, - s sine,, 
qfo = d sin 8, + s cos 8,, 

(3.24) 

with d a constant. 

8, r] and 5 a t  the wave front: 
Thus solution of (3.8)-(3.10) with (3.23) as initial data gives the following valuesof 

(3.25) 
1 
k 

8 = - (e&- 1 + 8, e-ki, 

- 
(3.26) 

1-  
k 

r] = r]fo+-t+(e-kt-l) 

and 
12 - 1?#lfO 1 12 t = - t + - - - - ( 3 + e - 2 6 ) +  
k2 k 2 k3 

"0  ete-2kF-3e-2kt+ 9 e-k?. (3.27) 
( k 2  2 k )  

----- 
k2 2 k k2 

Using the same procedure as in example 1, we can easily show that 

fi = +[O,(l+ k8,) e-ktcos 8, - ( I  + kO,) e-kFsin O,] 

+ e;(i - e-kz) + 2 ( I - e-kz)] cos so - 

Different points on the wave front are initially characterized by different values 
of s. Equations (3.26) and (3.27) give the successive positions of the wave front moving 
along a ray starting from a point s, and the values of 8 and fi(s,f) along the ray are 
given by (3.25) and (3.28). To find the distribution of W within the pulse, we need to 
use the expressions for 8 and fi in (3.5). We note that e is a function of f only but 
that Ti depends also on s, which makes integration of (3.5) complicated. Since we 
are considering a short wave, i.e. the extent of the wave in the normal direction is 
small compared with that along the wave front, we replace s by an approximate 
value -6 ,  sin 0, + r] ,  cos 0,. From (3.24) we note that a t  the wave front the value 
of - to sin 8, + r] ,  cos 0, is the same as that of s. Using the value of 8 from (3.25) and 
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the value of 
initial conditions 

The solution is 

P .  Prasad and E .  V .  Krishnan 

from (3 .28)  with s = -~,sin8,+~,cos8,, we can solve (3 .5 )  with 

(3.29) 5 = 50,  r = To,  W = ~ o ( 5 0 , q o )  at f = 0. 

W = W, ekz { (k (d  cos 8, + 5, sin2 8, - 7, sin 8, cos 8,) - l (d  sin 8, - 5, sin 8, cos 8, [ 
+ qo cos2 8,) - ~0:) cos 0, + B, sin 8,}/((k(d cos 8, + 5, sin2 0, - 7, sin 8, cos 8,) 

- Z(d sin 8, - 5, sin 8, cos 0, + 7, cos2 19,) + 0; (i - e-kt) 

(3.31) 

- & e-kE + e - k f  ; 2z80 e-kF + 1 3 e-kf 
k k3 k2 2 k  ' (3 .32)  

where 

A = {k (d  cos 8, + 5, sin2 8, - rosin 8, cos 8,) 

B = {k(d  cos 8, + to sin2 8, - 3, sin 8, cos 8,) 

- l(d sin 8, - t,, sin 8, cos 8, + qo cos2 8,) - go:} cos 0, + 8, sin So, 

- l(d sin 8, - 5, sin 8, cos 8, + 7, cos2 8,) + 48; + 18,/k} cos 8, - ( l / k )  sin 8, 

(3.32 a )  

(3.32 b )  

and c = (lO,/k + 8:) cos 8, + ( l / k  + 8,) sin 8,. ( 3 . 3 2 ~ )  

As in example 1 ,  we can discuss the formation of a shock in the wave and follow its 
motion, but the expression for 5 is so complicated that it is difficult to get an expression 
for T, the time when a shock first appears somewhere in the pulse. 

4. Numerical results and conclusion 
To study the wave propagation in transonic flow we take the representative values 

of k and 1 from a calculation of the steady potential flow around a quasi-elliptical 
aerofoil section 0.1025-0.675-1.375 (Baurdoux & Boerstoel 1968) for which the values 
of the Mach number and flow inclination are given. From (2.29) and (3 .4 )  we can 
calculate k and 1 at different points on the sonic line. The values which we have used 
in both examples are k = 4.0 and 1 = - 7.36 ,  which are typical values at points of the 
sonic line where the flow is decelerating and trapping of waves is possible (Prasad 
1973). From (3 .11)  and (3 .25)  it  follows that in all cases as itends to +co, B tends to a 
limiting value - l / k  equal to 1.84. 
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t" 

FIGURE 1. Wave profiles for 0, = 0. (a) 1 = 0, (b )  t = 0.2, (c )  t = 0.4. 

Example 3 

Here we take the initial distribution of W as 

For numerical computation we take a and p to be -0.05 and -toe05 respectively. 
I? is fixed t'o be 10. In the derivation of the theory we assumed that 6 = O(6) and 
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q = O( l), where S < 1. So the range of values of 5, we have taken is from - 0.05 to 
+ 0.05 and that of qo is from - 0.5 to + 0.5. Equation (3.20) gives the time a t  which 
a shock appears. We find T to be equal to 0.255. We have drawn the pulses at I = 0 
(figure 1 a), at I = 0.2 (figure 1 b )  and a t  I = 0-4 (figure 1 c).  In  figures 1 ( b )  and (c), the 
normals to the wave fronts make angles of 1.01 74 rad and 1.47 74 rad respectively 
with the f ;  direction. Since the expression for W is independent of qo, the amplitude of 
the pulse at a given instant remains the same for different values of vo. We note that, 
at I = 0.4, has changed from 0 to 1.47, which is not very much different from its 
limiting value 1-84. 

In  drawing these figures for I > 0, the scale of 6 has not been shown whereas scales 
of W and q have been shown. As the pulse moves, the various sections move away 
from each other by large distances. In  the figures they are brought closer by choosing 
a suitable scale for f ; .  When this is done the curves representing each section (which 
correspond to constant values of qo) become very steep. We have used a different 
scale to draw the sections of the pulse. This amounts to a distortion of the pulse in the 
sense that the pulse should actually look much steeper than it does in the figures. In  
the figures we have indicated the sections by giving the values of qo there. At I = 0.2, 
figure 1 ( b )  clearly shows that the trailing front is steeper but no shock has appeared. 
In  figure 1 (c), the trailing front is terminated by a shock whose amplitude has become 
quite large. 

Example 2 

In  this case we have taken the initial value of 8 to be an, i.e. the initial value of 8 
is (4n)d rad. We took the same initial pulse as in example 1 but now the normal 
to the wave front makes a non-zero angle with the t axis. Therefore we chose 

10 otherwise. 

The values of a, P and I? are the same as in example 1.  In  this case we have drawn the 
pulses for I = 0, I = 0.2, I = 0.35 and I = 0.4 (figure 2). The remark about the scales 
of to and qo in example 1 is valid here also. At I = 0.2, 0.35 and 0.4, the normals to the 
wave fronts make angles of 1-37 d ,  1.58 r* and 1-63 74 rad respectively with the taxis. 
We note the following important points which distinguish example 2 from example 1.  

(i) The amplitude of the wave now depends on s, i.e. it is different at various normal 
sections of the wave. Therefore, unlike example 1, the height of the pulse is not 
uniform. 

(ii) We have not fitted the shock into the pulses (figures 2c, d).  However, figure 2 (c )  
shows that W has become multi-valued at  qo = 0, qo = 0.2 and qo = 0.4 but not at 
q0 = - 0.2. The shock appears only in a portion of the profile and it is very difficult 
to follow it up. In  figure 2 ( d ) ,  the shock is present at  every section. 

(iii) The denominator in the expression for the curvature given by (3.28) becomes 
zero and then negative a t  I = 0.2 for certain values of s. This shows that the wave 
front develops a kink (which we have not shown in the figures) and changes its direction 
abruptly. This confirms analytically the situation shown in figure 18 in Spee’s (1971) 
article. 

The authors are grateful to Dr S. K. Chakrabartty for valuable discussions. 



FIGURE 2. Wave profiles for Oo = 4.. (a) t = 0, ( b )  t = 0-2, (c )  3 = 0.35. (d) t = 0.4. 
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